¹³C NMR Spectra of the Products of Hydroboration of 1-Alkynes and of 1-Halo-1-alkynes with 9-Borabicyclo[3.3.1]nonane and with Dicyclohexylborane. Investigation of the Thermal Decomposition of Some (1-Halo-1-alkenyl)dicyclohexylboranes

Clarence D. Blue*

Richard B. Wetherill Laboratory, Purdue University, West Lafayette, Indiana 47907

Donna J. Nelson*

Department of Chemistry, The University of Oklahoma, Norman, Oklahoma 73019

Received October 4, 1982

¹³C NMR spectra were obtained (1) of 1-alkenylboranes and 1,1-diboraalkanes, the products of mono- and dihydroboration of 1-alkynes, respectively, and (2) of (1-halo-1-alkenyl)dialkylboranes, the products of hydroboration of I-halo-1-alkynes with the title compounds. The chemical shift for C-1 of each 1,1-diboraalkane is reported. The products of the reactions of 9-borabicyclo[3.3.1]nonane with 1-halo-1-alkynes show upfield shifts (~ 10 ppm) for the alkene C-2 upon changing the solvent from CDCl₃ to THF. This indicates formation of an organoborane-THF complex, which is cited as the reason for slower protonolysis in THF solvent. The corresponding dicyclohexylborane products show much smaller ¹³C shifts and undergo protonolysis rapidly in either CDCl₃ or THF solvent. With the dicyclohexylborane products, a cyclohexyl group migrates slowly at room temperature to give, after AcOH protonolysis, the 1-cyclohexyl-1-alkene.

Introduction

Previous work in this laboratory involved developing practical procedures for the synthesis of cis-1-halo-1-alkenes from 1-halo-1-alkynes (eq 1).¹ Representative (1-

$$\begin{array}{c} R' \\ R' \\ R' \\ BH + X \\ \hline \end{array} = -R \\ \hline \\ R'_{2}B \\ 1 \end{array} \begin{array}{c} X \\ A \subset OH \\ R'_{2}B \\ 1 \end{array} \begin{array}{c} X \\ A \subset OH \\ R' \\ 2 \end{array} \begin{array}{c} R \\ A \subset OH \\ R' \\ 1 \end{array}$$
(1)

halo-1-alkenyl)dialkylboranes (1) were synthesized from dicyclohexylborane (Chx₂BH) and from 9-borabicyclo-[3.3.1]nonane (9-BBN). To obtain a better understanding of the reactivity of these compounds toward protonolysis, the ¹³C NMR spectra were examined. During the course of this work, an unexpected thermal rearrangement of 1 (R = Chx) was observed, and the products were identified by ¹³C NMR. Spectra of the corresponding nonhalogenated products are also reported here.

Results and Discussion

1-Alkenyldialkylboranes (3 and 4) and 1,1-Diboraalkanes (5 and 6). Hydroboration of 1-alkynes with dialkylboranes gives 1-alkenylboranes, which can often react further to give 1,1-dibora compounds (eq 2).^{2,3} The

$$\stackrel{\mathsf{R}'}{\underset{\mathsf{R}'}{>}}_{\mathsf{B}\mathsf{H}} + \mathsf{H}_{--} = -\mathsf{R} - \bigwedge_{\mathsf{R}'_2\mathsf{B}} \stackrel{\mathsf{H}}{\underset{\mathsf{R}'_2\mathsf{B}}{\leftarrow}} \bigwedge_{\mathsf{H}} \stackrel{\mathsf{R}'_2\mathsf{B}}{\underset{\mathsf{R}'_2\mathsf{B}}{\leftarrow}} \bigwedge_{\mathsf{R}'_2\mathsf{B}} \bigwedge_{\mathsf{R}'_2\mathsf{B}} \bigwedge_{\mathsf{R}'_2\mathsf{B}} (2)$$

¹³C shifts for 1-alkenvlboranes 3 and 4 (Chart I) are included in Table I.

It is interesting to consider the effects of a boron substituent upon the carbon atoms in an adjacent single or double bond. For example, in Bu₃B, the ¹³C shifts of C-1 and C-2 are 29.8 and 28.4 ppm, respectively.4ª These could

be compared to the shifts of C-4 (32.7 ppm) and C-5 (29.2 ppm) in 2-ethylheptane.^{4b} (2-Ethylheptane was chosen to approximate the substitution pattern around boron.) Thus, there are only small upfield shifts at C-1 and C-2 upon replacement of carbon by boron. This might indicate a slight +I inductive effect of boron relative to carbon.⁵ However, one should remember that the boron substituent effects in the example discussed above should not be

Brown, H. C.; Blue, C. D.; Nelson, D. J., unpublished results.
 (2) (a) Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1961, 83, 3834. (b)
 Zweifel, G.; Clark, G. M.; Polston, N. L. Ibid. 1971, 93, 3395. (c) Brown,
 H. C.; Scouten, C. G.; Liotta, R. Ibid. 1979, 101, 96.
 (3) Wang, K. K.; Scouten, C. G.; Brown, H. C. J. Am. Chem. Soc. 1982, 104, 521

^{104. 531-6.}

^{(4) (}a) Yamamoto, Y.; Moritani, I. J. Org. Chem. 1975, 40, 3434. (b) Lindeman, L. P.; Adams, J. Q. Anal. Chem. 1971, 43, 1245-52. We are grateful to a referee for supplying this reference. (c) It should be noted that by comparing 3a to 9a, we are neglecting the effects of two alkyl substituents which are β to C-1 and γ to C-2. However, the error should be small, about -3 ppm at C-1 and ±1 ppm at C-2 (ref 5, p 75). (5) Stothers, J. B. "Carbon-13 NMR Spectroscopy"; Academic Press:

New York, 1972; Chapter 5.

			Tab	е I. ² С	NMK Si	aitts" of	Urgano	boranes	and of	the Cor chemic	respondu al shifts	ng Produ	CUS OI PT	otonolysi	s or kear	rangeme	11			
compd	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-12	C-13	C-14	C-15	C-16	C-17	C-18	C-19	C-20
2b 2c	117.5 107.6	131.3 135.0	26.4 29.5	30.2 30.4	22.0 22.3	13.4														
2d	82.1	141.3	34.4	30.1	22.2	13.9														
2f	118.0	131.9	27.2	29.0°	28.6°	31.8	22.8 20.5	14.1												
2g 2h	107.6 82.1	135.0 141.3	29.8 34.7	28.9°	28.2°	31.7	22.6 22.6	14.0 14.0									,			
38 38	133.4^{b} 133.3^{b}	153.4 153.4	35.8	30.6 28.7^{c}	$22.1 \\ 28.4^{c}$	13.7 31.5	22.3	13.7					34.0^{b} 34.1^{b}	27.5^{c}	27.3^{c} 27.3^{d}	26.9				
4a 4	$\frac{134}{124}b$	155.3 155.3	35.5 35.5	30.4 98.80	22.2 98.90	13.7 13.7	7 66	13 8					30^{b}	33.5 33.5	23.7					
5a	44.7^{b}	34.2	25.5	32.4	22.3	13.9	F. 44	0.01					36.2^{b}	27.6	27.6	27.0				
6a 6e	55.3^{b} 55.4^{b}	33.3 33.6	28.3 29.9^{c}	$32.2 \\ 29.1^{c}$	22.5 28.3^{c}	$14.0 \\ 31.8$	22.5	13.9					$\frac{31.4}{31.4}^{b}$	33.3 33.2	33.0 32.9	$23.1 \\ 23.0$				
7b 7c 7d	994	141.1 135.3 133.9	28.9 31.4 37 1	30.5 30.6 30.7	$22.4 \\ 22.3 \\ 22.3 \\ 1$	13.8 13.8 13.9							$\frac{36.0^{b}}{35.7^{b}}$	27.6^{c} 27.6^{c} 28.9^{c}	27.3° 27.6 28.2°	26.9 26.8 26.8				
7g 7g 7h	0 Q Q Q	141.0 135.7 134.0	29.2 31.8 37.3	28.9° 28.8° 28.6°	28.3° 28.4 $^{\circ}$	31.6 31.6 31.6 31.6	22.5 22.5 22.5	$13.9 \\ $					35.8^{b} 35.6^{b} 34.4^{b}	27.6^{d} 27.6 28.5 d	27.3^{d} 27.6 27.8^{d}	26.9 26.8 26.8				
80 80 80	$135 \\ 119 \\ 119 \\ b$	149.0 151.5 156.4	30.2 33.4 39.4	30.1 30.0 29.8 29.8	22.6 22.6 22.5	13.9 13.9 14.0							$\begin{array}{c} b \\ 32 \\ 33 \\ b \\ 2 \end{array}$	33.9 33.8 33.9	23.3 23.3 23.4					
80 80 80 81 80	$135^b_{119^b}$	149.1 151.5 156.4	30.4 33.7 39.8	29.1 ^c 29.1 ^c 29.1 ^c	27.7^{c}	31.7 31.7 31.7	22.6 22.6 22.6	14.0 14.1 14.1					$32^{b}{33}$	33.9 33.9	23.3 23.4 23.4					
9a 9e	$136.2 \\ 136.3$	$127.7 \\ 127.7$	31.9^{c} 32.9	32.3^{c} 29.6^{c}	$\begin{array}{c} 22.1 \\ 28.8^{c} \end{array}$	$13.8 \\ 31.7$	22.6	14.0	40.7 40.7	33.3 33.3	$26.1 \\ 26.1$	26.3 26.3								
10b 10c	q	$133.1 \\ 131.7$	32.3^{c} 32.2^{c}	32.2^{c} 32.1^{c}	$22.2 \\ $	13.8 13.9			42.8 42.5	33.6 33.7	26.8^{d} 26.9^{d}	26.2^{e} 26.2^{e}	q	$\frac{28.1^d}{28.7^d}$	27.4^d 27.3^d	26.6^{e} 26.5^{e}				
10d 10f	99	129.6 133.2	$\frac{31.8}{32.5}$	32.2^{c} 30.1^{c}	22.2 28.8^{c}	$\begin{array}{c} 13.9\\ 31.6 \end{array}$	22.5	13.9	$41.9 \\ 42.8$	33.6 33.7	26.9^{d} 26.9^{d}	26.1^e 26.2^e	q	29.5^{d} 28.1^{d}	27.0^d 27.4^d	$^{-}_{26.6^{e}}$				
10g 10h	q	$131.9 \\ 129.7$	31.8^{c} 32.6	30.2^{c} 29.5^{c}	29.0^{c} 28.8^{c}	31.5 31.6	22.5 22.5	$13.9 \\ 13.9$	42.5 41.9	33.6 33.6	26.9^{d} 26.9^{d}	26.2^e 26.1^e	q	28.7^{d} 29.5^{d}	27.3^{d} 27.0^{d}	26.5^{e} 26.4^{e}				
11b 111	94	129.0	32.0°	32.4°	22.1 99.4	13.5 13.8			42.3 49.5	33.0 33.0	26.6 ^d 96.8 ^d	26.0 ^e 96.3 ^e	4	27.8 ^d 28.0d	27.5^{d} 27.8^{d}	26.7^{e}	65.8 65.9	29.1^{f}	$\frac{28.6^f}{29.5^f}$	$\begin{array}{c} 44.2\\ 30.0^f \end{array}$
11d	0 Q .	129.0	32.0^{c}	32.30	22.1	13.6	0.00		42.2	33.0	26.6 ^d	26.0 ^e	- 0.0	27.7d	27.5 <i>d</i>	26.7 ^e	65.4 66.4	32.0 ^f	30.0 ^f	5.7
111g 111g	0 - 0 - 2	129.0 129.0	32.6 32.6	29.7°	28.4°	31.4 31.4	22.1 22.1	13.5	42.2	32.9 32.9 32.9	26.5d 26.5d	26.0^{e}	<i>م</i> م	27.7d 27.7d	27.5d	26.6^{e}	65.6 65.6	32.0 ^f 32.8 ^f	29.7 ^f 30.0 ^f	$29.2^{44.0}$
12a	<i>q</i>	129.3	32.5 ^c	32.4 ^c	22.5	13.9			42.6	33.2	26.9^d	26.3^{e}	q	28.1^{d}	27.8^{d}	27.0^{e}	54.8			
12 e	q	129.4	32.9	30.1 <i>°</i>	29.1 ^c	31.7	22.5	13.9	42.6	33.2	26.9^{d}	26.3°	q	28.0^{d}	27.8^{d}	27.0^{e}	54.8			
a Parts	s per millio	n downf	ield from	ı internal	Me4Si; (CDCI ₃ so	dvent.	^b Signal	broade	ned, oft	ten absen	ıt. ^{c-f} In	terchang	eable wit	h same sı	uperscrip	ť.			

Figure 1. ¹³C NMR spectrum of **6a** gives an example of prochirality (nonequivalence of C-14 and C-15). The signal for the dibora-substituted carbon (C-1) is observed easily.

considered general, and may be quite different for other organoboranes, especially those having other substituent patterns. The effect of a boron substituent upon a double bond is quite different. Comparison of the ¹³C shifts of C-1 and C-2 in **3a** (133.4 and 153.4 ppm, respectively) with those in **9a** (136.2 and 127.7 ppm, respectively) show that relative to carbon, boron again causes only a small shift at C-1 but a rather large downfield shift at C-2. In particular, the large shift at C-2 (~25 ppm) implies significant π -bond conjugation, as previously observed.^{4a,c} Thus, in these cases, the major effect of a boron substituent upon the adjacent double bond is probably a -K conjugative one.

The ¹³C spectra of the 1,1-dibora compounds 5 and 6 are the first reported for this type of compound. The diboron-substituted carbons have chemical shifts in the general area expected considering the pattern of the adjacent substituents.^{5,6} These carbons are easily observed, with linewidths at half-height similar to the monoboronsubstituted alkane carbons (5–15 Hz). The signal for C-1 in the ¹³C spectrum of **6a** (Figure 1) is typical.

In compounds 5 and 6, there is no molecular symmetry plane which bisects a dicyclohexyl or 9-BBN group respectively. In particular, a plane containing a boron atom and the adjacent prochiral center(s), C-13, is not a plane of symmetry due to the substitution pattern at C-1. This leads to nonequivalence of the ring carbons β and γ to boron in 5 and β to boron in 6.⁷ This nonequivalence results in two well-separated signals in the ¹³C spectrum of 6 (Figure 1; Chart I, * vs. O at C-14, -15).⁸ There are two signals, rather than four due to rotation about the B-C-1 bond. The molecular symmetry plane through C-1 (also a prochiral center) causes the gem dialkylborane groups to be equivalent and, of course, is not responsible for the observed chemical nonequivalence within the 9-BBN group.⁹ No similar doublets were observed in the spectrum of 5. Apparently, in this case, there is accidental coincidence of the ¹³C signals under the experimental conditions used in this investigation. For an excellent review and general discussion of prochirality and its effect on NMR spectra, see ref 7.

Hydroboration of 1-alkynes with dialkyboranes often results in mixtures of mono- and dihydroborated products.³

Blue and Nelson

Table II. ¹³C NMR Shifts^a of Selected Compounds in 1:1 CDCl₃/THF₂

	chemica	al shifts
compd	C-1	C-2
3e	133.2 ^b	153.6
4e	134^{b}	153.2
7f, $X = Cl$	с	140.7
7g, X = Br	с	135.0
7h, X = I	с	133.5
8f, $X = Cl$	С	141.8
8g, X = Br	с	139.7
$\mathbf{8h}, \mathbf{X} = \mathbf{I}$	130 ^b	144.0
12e	C	129.6

^{*a*} In ppm downfield from internal Me₄Si. ^{*b*} Broad signal. ^{*c*} Signal too broad to be observed.

The data in Table I show that ¹³C NMR should be a convenient method for estimating the relative amounts of the two products.

(1-Halo-1-alkenyl)dialkylboranes (7 and 8). The boron-substituted alkene carbons (C-1) give very broad ¹³C signals which are not always observed (Table I). Unlike 1-alkynes, the 1-halo-1-alkynes did not give any dihydroboration products, as determined by conventional methods.¹ This is in agreement with the ¹³C NMR spectra. For comparison, the data for the analogous haloalkenes 2 are also given in Table I. Compounds 7 and 8 also seem to show downfield shifts at C-2, as in the nonhalogenated ones. However, the effect is difficult to measure as there appears to be a variable boron-halogen interaction. For 7, the series Cl-Br-I gives increasingly upfield shifts at C-2, while for 8, the opposite trend is observed.

When treated with AcOH, the 9-BBN compounds 8 protonolyze much more slowly in THF (20–30 h) than in noncomplexing solvents such as $CDCl_3$ or pentane (1–3 min). The slower reaction in THF is probably due to formation of a complex with the solvent (eq 3). This is

supported by the ¹³C data for C-1 and C-2 (Tables I and II). The data for C-2 show a solvent shift of ~ 10 ppm upfield in THF, as compared to CDCl₃, for the 9-BBN hydroboration products.

In contrast, the dicyclohexylborane products 7 protonolyze rapidly (<1 min) in all solvents.¹ Comparison of the 13 C data for C-1 and C-2 of these compounds in CDCl₃ solvent (Table I) and in the presence of THF (Table II) shows only minor differences. This implies little if any complexation with THF. However, it is not clear why the 9-BBN adducts 8 strongly complex with THF while the corresponding dicyclohexylborane ones do not.

Stability of (1-Halo-1-alkenyl)dicyclohexylboranes (7). (1-Bromo-1-hexenyl)dicyclohexylborane 7c slowly decomposes at room temperature in THF or nonpolar solvents (CCl₄, pentane). Therefore, if protonolysis (eq 1) is delayed, a new product is obtained, in addition to the desired *cis*-1-halo-1-hexene 2a. This new product was identified as 1-cyclohexyl-1-hexene (9a) by comparison with authentic material prepared by a known synthesis.¹⁰ A solution of 7c in THF was kept at room temperature, and samples were quenched with AcOH and analyzed for

⁽⁶⁾ Wrackmeyer, B. Prog. Nucl. Magn. Reson. Spectrosc. 1979, 12, 227.

⁽⁷⁾ Jennings, W. B. Chem. Rev. 1975, 75, 307.
(8) For another example see: Brown, H. C.; Soderquist, J. A. J. Org. Chem. 1980, 45, 846.

⁽⁹⁾ We appreciate a referee informing us that similar chemical nonequivalence is observed in the ¹³C NMR spectrum of 2,4,6-trimethylheptane. Carman, C. J.; Tarpley, A. R., Jr.; Goldstein, J. H. *Macromolecules* 1973, 6, 719-24.

⁽¹⁰⁾ Zweifel, G.; Arzoumanian, H. J. Am. Chem. Soc. 1967, 89, 5086.

Figure 2. GC analysis of the room-temperature decomposition of 7c in THF.

9a and **2a** to determine the rate of decomposition (Figure 2). Similar rates were obtained with CH_2Cl_2 solvent. The presence of **9a** after protonolysis implies an alkyl migration (eq 4), and NMR spectra consistent with the expected

intermediate 10c were obtained. In THF, this *B*-bromo compound 10c reacts rapidly with the solvent to form B-(4-bromobutoxy)dicyclohexylborane (11c).¹¹

The corresponding chloro and iodo compounds decompose more slowly, requiring 1-2 days. Again, the corresponding compounds 10 and 11 were observed by NMR, and 9 was found after AcOH protonolysis.

Typically an alkyl transfer from boron to carbon involves formation of an "ate" complex¹² as in the Zweifel transalkene synthesis (eq 5).¹⁰ Thus, the rearrangement of 7

reported here is unusual since it occurs without the addition of an equivalent of base. The possibility that this reaction is catalyzed by the presence of Lewis bases, such as halide ion or THF, seems unlikely since the reaction rate is similar in $CDCl_3$ and THF. If one is to make efficient use of compounds, such as 7, the reactions must occur at a rate faster than that of the rearrangement. Therefore, reactions involving these compounds should be fast enough to be complete in 5-10 min at room temperature.

Experimental Section

General Comments. Standard techniques for handling airand moisture-sensitive compounds were used.¹³ Glassware was assembled hot or flamed out, while flushing with prepurified nitrogen. Reactions were carried out under a slight static pressure of nitrogen. The CDCl₃ was distilled from P₂O₅ and stored over 4-Å molecular sieves in the dark. THF was distilled from LAH. 9-BBN was prepared as previously described,¹³ and solutions in THF were standardized by measurement of the H₂ evolved upon hydrolysis with MeOH/THF.¹³ Chx₂BH was prepared from BH₃·SMe₂ immediately before use by a modification of the previously described procedure.¹⁴ The 1-halo-1-alkynes were prepared by standard literature procedures.¹⁵

GC analyses were carried out on a HP5750 equipped with a Carbowax 20M column (10% on 60/80 Chromosorb W, 12 ft \times 0.25 in). NMR data were obtained on a Varian FT-80A (¹³C, 20.0 MHz; ¹¹B, 25.517 MHz) or a Varian XL-200 (¹³C, 50.3 MHz). NMR samples were 10–20% by volume in the appropriate solvent (CDCl₃ or THF).

1-Alkenyldialkylboranes (3 and 4). Compounds 3 and 4 were synthesized as previously described.²

(1-Halo-1-alkenyl)dialkylboranes (7 and 8). The (1-halo-1-alkenyl)dialkylboranes were synthesized as reported¹ and isolated by removing the reaction solvent under vacuum (0.2 Torr). The appropriate solvent was then added for determination of the NMR spectra. For the Chx_2BH compounds, these operations were done quickly, and the samples kept at 0 °C until run to avoid problems from decomposition. Compounds 8g and 8h are lowmelting solids. The others are moderately viscous liquids at room temperature, and all fume strongly when exposed to air.

Stability of (1-Bromo-1-hexenyl)dicyclohexylboranes (7c). Chx₂BH (10 mmol) was prepared in a flask having a septumcovered sidearm. THF (18.2 mL) and *n*-docecane (0.3712 g, 0.5 mL, GC internal standard) were added via syringe. 1-Bromo-1hexyne (1.61 g, 1.3 mL, 10 mmol) was added dropwise while stirring the mixture in a room-temperature water bath. The total volume was then 20 mL. The mixture was stirred at room temperature, and samples (~0.2 mL) were removed occasionally with a double-ended needle and quenched with an excess of AcOH. The samples were treated by shaking with ~0.5 mL of 3 M K₂CO₃ and then drying with a small amount of K₂CO₃. GC analyses for **2c** and **9a** were then carried out. The results are shown in Figure 2.

Identification of the Products of Rearrangement of (1-Halo-1-alkenyl)dicyclohexylboranes (7) in THF and in $CDCl_3$. In a reaction similar to the previous one but without the internal standard, removal of the THF after rearrangement gave 11c as a viscous liquid: ¹³C NMR (Table I); ¹H NMR (CDCl₃) δ 5.45 (t, J = 7 Hz, H-2), 3.88 (t, J = 7 Hz, H-17), 3.42 (t, J = 7 Hz, H-20), 2.4–1.9 (br peak). The structure was assigned by comparison with ¹³C and ¹H NMR spectra of similar known compounds. 12a was synthesized by a known procedure,¹⁰ and it shows a triplet in the ¹H NMR spectra at δ 5.48 (CDCl₃). The ¹³C NMR spectra (Table I) also indicate the same carbon skeleton as 11c. B-(4-Bromobutoxy)-9-BBN was made from the reaction of B-bromo-9-BBN with THF: ¹H NMR (CDCl₃) δ 3.98 (t, H-17), 3.42 (t, H-20), 2.2-1.2 (br peak); ¹³C NMR (CDCl₃, same numbering scheme as compounds in Chart I) δ 32.99 (C-14), 22.96 (C-15), 64.59 (C-17), 33.09, 30.27, 29.11 (C-18, -19, and -20). Thus, a combination of data from the spectra of the 9-BBN compound having a B-(4-bromobutoxy) group and the spectra of 12a accounts

^{(11) (}a) Edwards, J. D.; Getrard, W.; Lappert, M. F. J. Chem. Soc.
1955, 1970. (b) Kulkarni, S. U.; Patil, V. D. Heterocycles 1982, 18, 163.
(12) Negishi, E. "Organometallics in Organic Synthesis"; Wiley: New York, 1980; Vol. 1, pp 286-393.

⁽¹³⁾ Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. "Organic Syntheses via Boranes"; Wiley-Interscience: New York, 1975; pp 191-261.

⁽¹⁴⁾ Brown, H. C.; Blue, C. D. J. Org. Chem., submitted for publication.

^{(15) (}a) Delavarenne, S. Y.; Viehe, H. G. "Chemistry of Acetylenes";
H. G. Viehe, Ed.; Marcel Dekker: New York, 1969; pp 651-750. (b)
Brandsma, L. "Preparative Acetylenic Chemistry"; Elsevier: Amsterdam, 1971.

very well for the ¹H and ¹³C NMR spectral features of 11c. Also, protonolysis of 11c gives **9a**, identified by comparison (¹H and ¹³C NMR and GC) with an authentic sample prepared by protonolysis of 12a. Rearrangement of 7c in CDCl₃ gives 10c, identified by its fast reaction with THF to give 11c.

Studies of the decomposition of the other compounds 7 were carried out by allowing samples in $CDCl_3$ or $THF/CDCl_3$, in septum-covered NMR tubes to remain at room temperature for 1–2 days or at 50 °C for 3–6 h, respectively. Examination of the ¹³C NMR spectra (Table I) indicated that the same rearrangement as observed with 7c had occurred. The rearrangements were not always clean, especially in $CDCl_3$, and for 10g a complex mixture was observed by ¹³C NMR.

Acknowledgment. The financial support of the National Science Foundation is gratefully acknowledged for this research (CHE-7918881) and for the purchase of the Varian XL-200 spectrometer (CHE-8004246).

Registry No. 2b, 50586-18-0; **2c**, 13154-12-6; **2d**, 16538-47-9; **2f**, 64531-23-3; **2g**, 42843-49-2; **2h**, 52356-93-1; **3a**, 56962-83-5; **3e**, 62072-20-2; **4a**, 69322-45-8; **4e**, 73062-42-7; **5a**, 87393-77-9; **6a**, 79919-22-5; **6e**, 87393-78-0; **7b**, 87393-79-1; **7c**, 87393-80-4; **7d**, 87393-81-5; **7f**, 87393-82-6; **7g**, 87393-83-7; **7h**, 87393-84-8; **8b**, 87411-94-7; **8c**, 67826-84-0; **8d**, 87393-85-9; **8f**, 87393-86-0; **8g**, 87393-87-1; **8h**, 87393-88-2; **9a**, 16538-48-0; **9e**, 87393-88-3; **10b**, 87393-90-6; **10c**, 87393-91-7; **10d**, 87393-92-8; **10f**, 87393-93-9; **10g**, 87393-94-0; **10h**, 87393-95-1; **11b**, 87393-96-2; **11c**, 87393-97-3; **11d**, 87393-98-4; **11f**, 87393-98-5; **11g**, 87394-00-1; **11h**, 87394-01-2; **12a**, 87394-02-3; **12e**, 87394-03-4; Chx₂BH, 1568-65-6; 9-BBN, 280-64-8; *B*-(4-bromobutoxy)-9-BBN, 87394-04-5; *B*-bromo-9-BBN, 22086-45-9; 1-bromo-1-hexyne, 1119-64-8.

On the Relationship between Molecular Geometry and Excited-State Properties of 9-Anthrylalkenes[†]

Hans-Dieter Becker* and Kjell Andersson

Department of Organic Chemistry, Chalmers University of Technology and University of Gothenburg, S-412 96 Gothenburg, Sweden

Received March 16, 1983

The excited-state properties of a series of 1-substituted and 1,1-disubstituted 2-(9-anthryl)alkenes have been investigated in terms of their fluorescence spectra and photochemical isomerizations. Large Stokes shifts of up to 10000 cm⁻¹ between absorption and emission maxima are attributed to geometrical differences between the ground state and the emitting excited state. The [cis]:[trans] ratio of the photostationary state was found to depend markedly on the nature of the 1-substituent. Photochemical isomerization of 1,3- and 1,5-bis(9- anthryl)-substituted trans olefins results in the formation of intramolecular $[4\pi + 4\pi]$ or $[4\pi + 2\pi]$ cycloaddition products. The cycloaddition reactions of carbonyl-substituted anthracenes are suggested to involve the triplet excited state.

The fluorescence spectrum of trans-1,2-bis(9-anthryl)ethylene in solution at room temperature is characterized by a Stokes shift of about 10 000 cm⁻¹, indicating the large difference between the molecular ground-state geometry and the geometry of the emitting singlet excited state.^{1,2} By contrast, *cis*-1,2-bis(9-anthryl)ethylene in solution at room temperature is nonfluorescent, most likely because its molecular geometry, which is characterized by two overlapping anthracene π systems in close proximity, enhances radiationless decay.³ Geometrical factors probably also contribute to the photochemical isomerization of the cis isomer by intramolecular Diels-Alder reaction, which involves one anthracene moiety as a diene and the other as a dienophile.⁴

We have now investigated the relationship between molecular geometry and excited-state properties of a series of 9-anthrylethylenes of general structure 1 (cf. Scheme I). In ethylenes 1a-e, \mathbb{R}^1 and \mathbb{R}^2 are identical, and, consequently, no net chemical change will be achieved by way of photochemical cis-trans isomerization. However, the photophysical properties of 1a-e, such as electronic absorption and emission spectra, may be affected as the steric demand of \mathbb{R}^2 increases. Compounds 1f-k are three pairs of geometrical isomers in which $\mathbb{R}^1/\mathbb{R}^2$, being phenyl, benzoyl, and acetyl, may govern the multiplicity of the reacting excited state. Finally, in ethylenes 11-q, $\mathbb{R}^1/\mathbb{R}^2$ incorporates an additional 9-anthryl moiety, such as 9anthrylcarbonyl or 9-anthrylmethyl, so that these compounds represent bichromophoric systems. In addition to

cis-trans isomerization, intramolecular photochemical reactions involving the anthracene moieties are conceivable for 1-q.

⁽¹⁾ Becker, H.-D.; Sandros, K.; Hansen, L. J. Org. Chem. 1981, 46, 821.

⁽²⁾ Becker, H.-D. Pure Appl. Chem. 1982, 54, 1589.

⁽³⁾ Becker, H.-D.; Hansen, L.; Andersson, K. J. Org. Chem. 1981, 46, 5419.

 ⁽⁴⁾ Becker, H.-D.; Sandros, K.; Andersson, K. Angew. Chem. 1983, 95, 507; Angew. Chem. Suppl. 1983, 609–619.

 $^{^{\}dagger}$ Dedicated to Professor G. O. Schenck on the occasion of his 70th birthday.